Ultrasound frame rate requirements for cardiac elastography: experimental and in vivo results.
نویسندگان
چکیده
Cardiac elastography using radiofrequency echo signals can provide improved 2D strain information compared to B-mode image data, provided data are acquired at sufficient frame rates. In this paper, we evaluate ultrasound frame rate requirements for unbiased and robust estimation of tissue displacements and strain. Both tissue-mimicking phantoms under cyclic compressions at rates that mimic the contractions of the heart and in vivo results are presented. Sinusoidal compressions were applied to the phantom at frequencies ranging from 0.5 to 3.5 cycles/sec, with a maximum deformation of 5% of the phantom height. Local displacements and strains were estimated using both a two-step one-dimensional and hybrid two-dimensional cross-correlation method. Accuracy and repeatability of local strains were assessed as a function of the ultrasound frame rate based on signal-to-noise ratio values. The maximum signal-to-noise ratio obtained in a uniformly elastic phantom is 20 dB for both a 1.26 Hz and a 2 Hz compression frequency when the radiofrequency echo acquisition is at least 12 Hz and 20 Hz respectively. However, for compression frequencies of 2.8 Hz and 4 Hz the maximum signal-to-noise ratio obtained is around 16 dB even for a 40 Hz frame rate. Our results indicate that unbiased estimation of displacements and strain require ultrasound frame rates greater than ten times the compression frequency, although a frame rate of about two times the compression frequency is sufficient to estimate the compression frequency imparted to the tissue-mimicking phantom. In vivo results derived from short-axis views of the heart acquired from normal human volunteers also demonstrate this frame rate requirement for elastography.
منابع مشابه
Elastographic image quality vs. tissue motion in vivo.
Elastography is a noninvasive method of imaging tissue elasticity using standard ultrasound equipment. In conventional elastography, axial strain elastograms are generated by cross-correlating pre- and postcompression digitized radio frequency (RF) echo frames acquired from the tissue before and after a small uniaxial compression, respectively. The time elapsed between the pre- and the postcomp...
متن کاملElastography Using Multi-Stream GPU: An Application to Online Tracked Ultrasound Elastography, In-Vivo and the da Vinci Surgical System
A system for real-time ultrasound (US) elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU) based accelerated normalized cross-correlation (NCC) elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC w...
متن کاملPii: S0301-5629(02)00488-x
Early detection of cardiovascular diseases has been a very active research area in the medical imaging field. Assessment of the local and global mechanical functions is one of the major goals of accurate diagnosis. In this study, we investigated the feasibility of elastography for estimation and imaging of the local cardiac muscle displacement and strain in a human heart in vivo. In its noninva...
متن کاملA freehand ultrasound elastography system with tracking for in vivo applications.
Ultrasound transducers are commonly tracked in modern ultrasound navigation/guidance systems. In this article, we demonstrate the advantages of incorporating tracking information into ultrasound elastography for clinical applications. First, we address a common limitation of freehand palpation: speckle decorrelation due to out-of-plane probe motion. We show that by automatically selecting pairs...
متن کاملMyocardial elastography at both high temporal and spatial resolution for the detection of infarcts.
Myocardial elastography is a novel method for noninvasively assessing regional myocardial function, with the advantages of high spatial and temporal resolution and high signal-to-noise ratio (SNR). In this paper, in-vivo experiments were performed in anesthetized normal and infarcted mice (one day after left anterior descending coronary artery [LAD] ligation) using a high-resolution (30 MHz) ul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ultrasonics
دوره 49 1 شماره
صفحات -
تاریخ انتشار 2009